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Pseudoadditive States on a Logic
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We propose an extension of the notion of a state on a logic to a pseudoadditive
state on a logic replacing the ordinary addition by a pseudoaddition. As a special
class we underline the possibility states based on the operation of supremum. For
a Boolean algebra B and a logic L, we study the extension of the pseudoadditive
states on B and L to a pseudoadditive state on their Ptak sum B+ L.

1. INTRODUCTION

In classical measure theory there are several approaches to generaliz-
ing the notion of a measure based on replacing the usual addition on the
real line by some other “reasonable” binary operation. Let us call this
operation a pseudoaddition. If one restricts consideration to the generaliza-
tions of a probability measure, it is enough to deal with the pseudoaddition
on the unit interval [0, 1]. For the building up of an integration theory, it
is necessary to introduce another binary operation, say a pseudomultiplica-
tion. The recent results on this topic include Weber (1984), RieCanova
(1982), and Sugeno and Murofushi (1987). An interesting special case is the
possibility theory based on the supremum v instead of the addition +
(Zadeh, 1978). Similar ideas in the fuzzy set theory are developed in
Klement and Weber (1991) and Butnariu and Klement (1991).

In guantum logic theory, probability measures on a logic represent
states of a described physical system and therefore are called stafes on a
logic. However, the nature of a physical system need not be additive. This
encourages us to introduce the notion of a @-state ( pseudoadditive state),
where @ is a pseudoaddition replacing the ordinary addition +. In
particular, for @ = , (i.e., @ is the supremum of reals), a v -state will be
called a possibility state.
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Recently Ptak (1986) introduced a logic £ containing (as an embed-
ding) a given Boolean algebra B and a given logic L. . is now called a
Ptak sum, ¥ =B+ L. States on B and L induce the states on % in a
manner similar to the integration of a simple function in probability
theory. An analogous problem for @-states is studied in Section 3. The
primary task here is to find a suitable pseudomultiplication ¢ correspond-
ing to @. In general, no convenient ® corresponding to a given @ may
exist. For the possibility states, a suitable pseudomultiplication is, e.g., *,
i.e., the infimum of reals.

2. PSEUDOADDITIVE STATES

Let L be a quantum logic (Beltrametti and Cassinelli, 1981; Varadara-
jan, 1968) (or simply a logic), i.e., L is an orthomodular ¢-orthocomplete
orthoposet, i.e., a partially ordered set which contains the smallest element
0 and the greatest element 1, on which an orthocomplementation map
L:L—-1L is defined so that the following conditions are fulfilled:

(i) (@H)* = a for any a el (idempotency).

(i) For any a, beL, a < b, one has b+ < g+ (order reversing).

(ili) The greatest lower bound (meet) of @ and a~+ with respect to the
given partial order, i.e., a A at, exists in L for any geL and a A a* =0
(law of contradiction); similarly the least upper bound (join) a vat =1
for any aeL (excluded middle law).

(iv) The join \/, a, exists in L for any sequence {a, } =L of pairwise
orthogonal elements of L, i.e., a, L a,, (or equivalently a, < a;5) whenever
n # m (o-orthocompleteness condition).

(v) Foranya, beL,a<b,onehasb=av (@t Ab)=av(avbi)*t
(orthomodular identity).

Elements of a logic represent elementary statements about some
physical system. A mapping s: L — [0, 1] representing the state of a physical
system is therefore called a state on L if it fulfills the following:

(S1) s() =1
(S2) s(a v b) =s(a) + s(b) for any orthogonal a, beL.

However, the nature of a physical system need not be additive. One
possible way to overcome this is by replacing the ordinary addition + in
(S2) by a pseudoaddition @.

Definition 1. A binary operation @ on [0, 1] is called a pseudoaddition
if it is continuous, nondecreasing in both components, associative, and
x+0=0+4x=x for any x¢e[0, 1].
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Note that the commutativity of a pseudoaddition follows from the
above-stated axioms on @ due to results of Ling (1965). Further, any
pseudoaddition @ is, in fact, a continuous f-conorm on [0, 1] (see, e.g.,
Schweizer and Sklar, 1983). The next theorem (Ling, 1965; Schweizer and
Sklar, 1983) gives a full characterization of the structure of a pseudoaddi-
tion .

Theorem 1. Let @ be a pseudoaddition on [0, 1]. Then there is a
system of pairwise disjoint open subintervals of the unit interval
{Jax, B[, keK} and a system of continuous strictly increasing functions
{gc, keK}, g [, Bl =10, +00], gloy) =0, so that for any x, ye[0, 1]
one has

gk_l(min{gk(x) +2:(3); g (B} if  x, yelo, Bl
X,y otherwise

x®y={

Recall that x , y =sup{x;y}. The system {{Joy, fil; g ). k€K} ~ @
is called a representation of @. In the following example, we present the
most applied pseudoadditions (¢-conorms) on [0, 1].

Example 1. (al) Strict pseudoaddition @ =~ {{]0,1[;g>}, where
g(1) = +00. In this case, one has x@®y =g '(g(x) +g(y)) for any
x, ye[0, 1]. Put, e.g., g(x) = —log(l — x). Then

x@y=1-(I-x) - (I-p=x+y—x-y

i.e., @ is the probabilistic sum. Note that for a given strict pseudoaddition
@, the function g is called an additive generator of @ and it is unique up
to a positive multiplicative constant.

(bl) Nilpotent pseudoaddition @ ~ {10, 1[; g}, where g(1) = 1. Note
that it is enough to require g(1) to be finite; a positive multiplicative
constant (i.e., if one takes ¢ - g instead g) does not change the induced @
and hence one can always require g(1) =1 in this case. Then, for a given
nilpotent @, g is unique. Take, e.g., g(x) = x. Then x ®y = min{x + y, 1},
ie., @ is the bounded sum.

(cl) The supremum | is a pseudoaddition with empty representation.
It can be obtained, e.g., as a limit pseudoaddition of a sequence of
nilpotent pseudoadditions {®, } with generators g,(x) = x", neN.

Definition 2. Let @ be a pseudoaddition on [0, 1] and let L be a logic.
A mapping m: L — [0, 1] will be called a @-state (a pseudoadditive state) if
it fulfills the following:

(PS1) m(1) =1 and m(0) =0
(PS2) m(a v b) = m(a) ®m(b) for any orthogonal a, beL.
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Note that (PS2) does not imply m(0) =0. If m is not a constant
mapping and if the only idempotents of @ are 0 and 1, then (PS2) implies
m(0) = 0. This is, e.g., the case of strict and nilpotent pseudoadditions
(these are often called Archimedean f-conorms). A negative example is ., .
Further, a classical state s is a “bounded sum” state and vice versa, any
“bounded sum” state m is a classical state iff m(a) +m(at) =1 for any
acL. There are four principal types of pseudoadditive states:

(SS) @-states with strict @ (strict states).

(NSA) @-states with nilpotent @ fulfilling g(m(a)) + g(m(a*)) =1
for any aeL (nilpotent states additive).

(NSP) @-states with nilpotent @ not included in (NSA), i.e., for
some aeL one has g(m(a)) + g(m(a™)) > 1 (nilpotent states
pseudoadditive).

(PS)  -states (possibility states).

A similar classification of pseudoadditive measures (with respect to an
Archimedean @) was introduced in Weber (1984). Possibility states can be
defined equivalently through (PS1) and (PS2%):

(PS2*) m(a v b) =m(a) , m(p) for any a, beL.

Lemma 1. Any strict state is a transformation of a “probabilistic sum”
state.

Proof. Let m be a @-state where x®y =g '(g(x) +g(y),
g(1) = +o0. Put m; = 4 o m, where A(x) =1 — exp(—g(x)), x€[0, 1]. Then
m, is a “probabilistic sum” state and m=#4""'om. W

Lemma 2. Any @-state m of type (NSA) is a transformation of a
classical state s.

Proof. Let g be the generator of @ [&® is nilpotent and hence
g(1) =1]. Put s=g om. Then s is a “bounded sum” state of type (NSA)
and hence it is a classical state. Further, m=g~'os. MW

Lemmas 1 and 2 are special cases of the following theorem.

Theorem 2. Let h: —[0, 1] be a strictly increasing bijection. Let & be
a pseudoaddition on [0,1]. Then &, defined via x @,y =
h=Y(h(x) @ h(y)), for x,ye[0, 1], is a pseudoaddition on [0, 1], too. Fur-
ther, ®, = @ for any A iff @ = ,. Let m be a @-state on a logic L. Then
homis a @,-state on L (of the same type as m). If m is a possibility state
on L, then 4 om is a possibility state on L for any 4, too.

Example 2. Let L =(Q, A) be a concrete logic and let f: Q—[0, 1] be
any function such that sup{f(w); 0 €Q} = 1. Put I1(a) = sup,.,f(w) for all
aeL. Then I1 is a possibility state on L.
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Lemma 3. Let L be an atomic logic. A mapping II: L—[0,1] is a
possibility state on L if and only if there is a mapping f: 4 —[0, 1],
sup{f(a); acA} =1, where 4 is the system of all atoms of L.

Proof. It is enough to put f(a) = I1(a), ae 4. Vice versa, for any beL,
one has II(h) =sup{fla);a <b,acd}. M

Remark 1. If m is a two-valued pseudoadditive state on L, then it is a
@-state for any pseudoaddition @, and vice versa. If m is an (NSA)-type
pseudoadditive state for some nilpotent pseudoaddition, then it is two-
valued iff it is both a classical state on L and a possibility state on L.

3. ®-STATES ON A PTAK SUM

Let B be a Boolean algebra and let L be a logic. The Ptak (1986) sum
Z of Band L, ¥ =B+ L, is a logic which may be viewed as a system of
all possible n-tuples p =({(ay, by), ..., (a,,b,)), neN, where a,eB and
beL,i=1,2,...,na, v -va,=1g,a 1 a whenever i #j. Recall that
for r = (¢, dy), - - - (¢, 4,,)) €L, one has

r<p iff d <b, whenever ¢, Ag; #0p
rLlp iff d 1b whenever c¢; Aag #0g
rvp=WaAnc,bvd), i=1,2,....m j=12,...,n)

The embeddings f; and f5, respectively, of B and L, respectively, into % are
the following:

ﬁ (a) = ((aﬂ lL)a (als OL)) fOr (ZGB
f2(d) = ((1g, b)) for beL

For more details see Ptak (1986) or Jani§ and Rie¢anova (1992). Let s,, s,,
respectively, be states on B, L, respectively. For any element pe.%, put

n

()= ¥ si(@) s:(br)
Then sis a state on % and s, =mof, i=1,2.

In the following, we will extend the foregoing results on the Ptak sum
and the states to the case of pseudoadditive states. For a given pseudoaddi-
tion @, let m; be a P-state on B and let m, be a @-state on L. Under
which conditions is there a @-state m on ¥ so that m;=mof, i=1,2?
For this purpose we have to look for a pseudomultiplication ® on [0, 1]
with some “‘convenient” properties. Then we will expect m in the following
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form: for a pe.¥, one has
m(p) = (m(a;) © my(b)) @ D (m(q,) © my(b,))

Let us denote I, = {m,(a); aeB} and I, = {m,(b); beL}. Then m can be a
@-state only if © fulfills the following:

(D) x ®1l=xfor any xel, and 1 © z =z for any zel,.

() x®y)Oz=x0)D(yOz) and xOWD2)=x Ow) @
(x © z2) for any x, yel, and z,wel, such that x =m,(a,) and
y=m,(a,), a, La, and z =my(b,), w =m,(b,), b, L b,.

(3) x ©z=0 for xel;, zel, iff x =0 or z=0.

If m is a pseudoadditive state of type (SS), (NSP), or (PS), any x, y, z, w
from the open unit interval may occur in (2) in general. However, if m is
of type (NSA), the situation is rather different: let g be a generator of @;
then only x, y, z, w fulfilling

gx)+g(y) <1 and  g(z) +gw) <1

may occur in (2). These facts together with some other natural require-
ments lead to the following definition.

Definition 3. Let @ be a pseudoaddition on [0, 1]. A binary operation
© on [0, 1] will be called a pseudomultiplication corresponding (A4 -corre-
sponding) to @ if it satisfies the following:

(M1) 1 is both the left and the right unit, ie., x ©® 1 =x and
1 ® z =z for any x, z€[0, 1].
(M2) @ is distributive with respect to ©, i.e.,

x@YOCEOW=x02)DxOWS(yO2B(y Ow
for any x, y, z, we[0, 1]

M3) x ©Oz=0iff x=0o0r x=0.
(M4) © is nondecreasing in both components.
(M5) © is continuous.

The A-correspondence of © to @ is defined only for nilpotent
pseudoadditions @ (with a generator g). We replace only (M2) by (M2A),
where the restricted distributivity is required, i.e., we deal only with
x,y,z,w from the wunit interval satisfying g(x)+g(y) <1 and
g(z) +gw) < 1.

Theorem 3. Let @ be a pseudoaddition and let ® be a pseudomulti-
plication corresponding to @ (A4 -corresponding to @). Let B be a Boolean
algebra and let L be a logic. Let m; be a @-state on B of some type and
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let m, be a @-state on L of the same type as m,. then

m(p) = (m(a;) O my(,)) @ - - ®(my(a,) © (My(b,)), peZ

defines a @-state on # (of the same type as m; and m,) such that
m,=meof, i=1,2

The proof of the previous theorem is an easy consequence of Defini-
tion 3. Note only that in the case of @-states of type (NSA) we have to
deal with an A-corresponding pseudomultiplication ©.

Lemma 4. Let @ be a strict or a nilpotent pseudoaddition. Then there
is no pseudomultiplication © corresponding to &@.

Proof. Let O be a pseudomultiplication corresponding to @. Then for
any zel0, I, x,=1—1/n, n=1,2,..., one has limx, Qz=10z =z
Further, x, ® x, <1 implies

(x,®x,) 0z=(x,020((x,02)<10z=z

and consequently z@z <z. But this is a contradiction with the
Archimedean property of @ claiming z @z > z for any nontrivial z. W

Example 3. Let @ be a nilpotent pseudoaddition with generator g. Put
x ©z=g"'(gx) - £)

for any x, z€[0, 1]. Then © is a pseudomultiplication A-corresponding to

@.

Remark 2. Let @ be a nilpotent pseudoaddition with generator g. Let
B be a Boolean algebra and let m, be an (NSA)-type ®-state on B. Let LL
be a logic and let m, be an (NSA)-type @®-state on L. Let © be a
pseudomultiplication introduced in Example 3. By Theorem 2, there is a
@-state m on the Ptak sum % induced by m, and m,. We get

mp) = (£ stmia) 2mo))  or pez

Following Lemma 2, we see that this situation corresponds (up to the
transformation g) to the situation dealing with classical states.

Example 4. Let h, g be any strict increasing continuous bijections from
the unit interval into the unit interval such that A(x) < x, g(x) < x for any
xef[0, 1]. Put

x C;) z=max{h(x) - z; x - q(z)}

xQz= max{min{#(x), z}; min{x, q(z) }}



1940 Mesiar

for any x,ze[0,1]. Then both ®, and (®, are pseudomultiplications
corresponding to , which may not be commutative.

Remark 3. Let h = q in Example 4 be the identity on [0, 1], i.e.,

xXQz=x"z and X © z =min{x, z}
1 2

Let m; be a possibility state on a Boolean algebra B and let m, be a
possibility state on a logic L. Let us define, for any pe =B+ L,

m(p) =max{m,(a;) ‘my(b,);i=1,2,...,n}
M(p) = max{min{m, (a,), my(b,)}; i =1,2,...,n}

Then both m and M are possibility states on % such that
mof,=Mof,=m,;, i =1, 2. Note that m is similar to the Shilkret (1971)
integral and M to the Sugeno (1974) integral for possibility measures.
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