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Pseudoadditive States on a Logic 
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We propose an extension of the notion of a state on a logic to a pseudoadditive 
state on a logic replacing the ordinary addition by a pseudoaddition. As a special 
class we underline the possibility states based on the operation of supremum. For 
a Boolean algebra B and a logic L, we study the extension of the pseudoadditive 
states on B and L to a pseudoadditive state on their Ptfik sum B + L. 

1. I N T R O D U C T I O N  

In classical measure theory there are several approaches to generaliz- 
ing the not ion o f  a measure based on replacing the usual addit ion on the 
real line by some other " reasonable"  binary operation.  Let us call this 
operat ion a pseudoaddit ion.  I f  one restricts considerat ion to the generaliza- 
tions o f  a probabil i ty measure, it is enough to deal with the pseudoaddi t ion  
on the unit interval [0, 1]. For  the building up of  an integration theory, it 
is necessary to introduce another  binary operation,  say a pseudomultipl ica- 
tion. The recent results on this topic include Weber  (1984), Rie6anovfi 
(1982), and Sugeno and Murofushi  (1987). An  interesting special case is the 
possibility theory based on the supremum v instead o f  the addit ion + 
(Zadeh,  1978). Similar ideas in the fuzzy set theory are developed in 
Klement  and Weber  (1991) and Butnariu and Klement  (1991). 

In quan tum logic theory, probabil i ty measures on a logic represent 
states o f  a described physical system and therefore are called states on a 
logic. However,  the nature o f  a physical system need not  be additive. This 
encourages us to introduce the not ion o f  a O-s ta te  (pseudoadditive state), 
where | is a pseudoaddi t ion replacing the ordinary addit ion + .  In 
particular, for �9 -- v (i.e., �9 is the supremum of  reals), a v - s t a t e  will be 
called a possibility state. 
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Recently Ptfik (1986) introduced a logic 5r containing (as an embed- 
ding) a given Boolean algebra B and a given logic L. ~r is now called a 
Ptfik sum, 5r = B + L .  States on B and L induce the states on ~ in a 
manner similar to the integration of  a simple function in probability 
theory. An analogous problem for ~)-states is studied in Section 3. The 
primary task here is to find a suitable pseudomultiplication Q) correspond- 
ing to G.  In general, no convenient C) corresponding to a given ~ may 
exist. For the possibility states, a suitable pseudomultiplication is, e.g., ^, 
i.e., the infimum of  reals. 

2. PSEUDOADDITIVE STATES 

Let L be a quantum logic (Beltrametti and Cassinelli, 1981; Varadara- 
jan, 1968) (or simply a logic), i.e., L is an orthomodular o--orthocomplete 
orthoposet, i.e., a partially ordered set which contains the smallest element 
0 and the greatest element 1, on which an orthocomplementation map 
_L: L ~ L  is defined so that the following conditions are fulfilled: 

(i) (a• • - - a  for any a ~ L  (idempotency). 
(ii) For any a, b~L,  a < b, one has b • < a • (order reversing). 
(iii) The greatest lower bound (meet) of a and a • with respect to the 

given partial order, i.e., a A a • exists in L for any a ~ L  and a ^ a • = 0  
(law of contradiction); similarly the least upper bound (join) a v a • = 1 
for any a ~L (excluded middle law). 

(iv) The join V ,  an exists in L for any sequence (an } ~ L  of pairwise 
orthogonal elements of L, i.e., an _L a m (or equivalently a, < am ~) whenever 
n ~ m (~-orthocompleteness condition). 

(v) For a nya ,  b ~ L , a < b ,  o n e h a s b = a v ( a  • 1 7 7  • 
(orthomodular identity). 

Elements of a logic represent elementary statements about some 
physical system. A mapping s: L ~ [0, 1] representing the state of  a physical 
system is therefore called a state on L if it fulfills the following: 

(S1) s(1) = 1 
($2) s(a v b ) =  s (a )+s (b)  for any orthogonal a, bEL. 

However, the nature of a physical system need not be additive. One 
possible way to overcome this is by replacing the ordinary addition + in 
($2) by a pseudoaddition •. 

Definition I. A binary operation ~) on [0, 1] is called a pseudoaddition 
if it is continuous, nondecreasing in both components, associative, and 
x + 0 = 0 + x  = x  for any x~[0,  1]. 



Pseudoadditive States on a Logic 1935 

Note that the commutativity of a pseudoaddition follows from the 
above-stated axioms on • due to results of Ling (1965). Further, any 
pseudoaddition @ is, in fact, a continuous t-conorm on [0, 1] (see, e.g., 
Schweizer and Sklar, 1983). The next theorem (Ling, 1965; Schweizer and 
Sklar, 1983) gives a full characterization of the structure of a pseudoaddi- 
tion O. 

Theorem 1. Let �9 be a pseudoaddition on [0, 1]. Then there is a 
system of pairwise disjoint open subintervals of the unit interval 
{]ak, ilk[, k ~ K }  and a system of continuous strictly increasing functions 
{gk, k~K} ,  gk: [etk, flk] ~[0 ,  + ~ ] ,  g(~k)=0,  SO that for any x, y~[0, 1] 
one has 

x ( ~ y = ~ g ; l ( m i n { g k ( x ) + g k ( y ) ; g k ( f l k ) } )  if x,y~]~k,  flk[ 
[ X v  y otherwise 

Recall that x v Y = sup{x;y}. The system {(]Tk, flk[;gk), k ~ K }  ~ | 
is called a representation of G. In the following example, we present the 
most applied pseudoadditions (t-conorms) on [0, 1]. 

Example 1. (al) Strict pseudoaddition �9 ~ {(]0, 1[; g)}, where 
g ( 1 ) = + ~ .  In this case, one has x ( ~ y = g - l ( g ( x ) + g ( y ) )  for any 
x, y~[0,  1]. Put, e.g., g(x) = - l o g ( l  - x). Then 

x G y  = 1 - ( 1  - x )  .(1 - y )  = x  + y  - x  -y 

i.e., O is the probabilistic sum. Note that for a given strict pseudoaddition 
| the function g is called an additive generator of @ and it is unique up 
to a positive multiplicative constant. 

(bl) Nilpotent pseudoaddition �9 ~ {(]0, 1[; g)}, where g(1) = 1. Note 
that it is enough to require g(1) to be finite; a positive multiplicative 
constant (i.e., if one takes c �9 g instead g) does not change the induced �9 
and hence one can always require g(1) = 1 in this case. Then, for a given 
nilpotent G,  g is unique. Take, e.g., g(x) = x. Then x (~y = min{x + y ,  1}, 
i.e., | is the bounded sum. 

(cl) The supremum ~ is a pseudoaddition with empty representation. 
It can be obtained, e.g., as a limit pseudoaddition of a sequence of 
nilpotent pseudoadditions {G, } with generators gn(x) = x n, n~N. 

Definition 2. Let �9 be a pseudoaddition on [0, 1] and let L be a logic. 
A mapping m: L ~ [0, 1] will be called a G-state (a pseudoadditive state) if 
it fulfills the following: 

(PS1) m(1) = 1 and m(0) = 0 
(PS2) m(a v b) = m(a)Om(b) for any orthogonal a, b~L. 
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Note  that  (PS2) does not  imply i n ( 0 ) =  0. I f  in is not  a cons tant  
m a p p i n g  and if the only idempotents  o f  �9 are 0 and 1, then (PS2) implies 
m(0) = 0. This is, e.g., the case of  strict and ni lpotent  pseudoaddi t ions  
( these are often called Arch imedean  t -conorms) .  A negative example  is v.  
Fur ther ,  a classical state s is a " b o u n d e d  sum"  state and vice versa, any 
"bounded  sum"  state m is a classical state iff in(a) + in(a • = 1 for  any 
a EL. There  are four  principal types of  pseudoaddi t ive  states: 

( S S )  O-s ta tes  with strict �9 (strict states). 
(NSA)  O-s ta tes  with ni lpotent  �9 fulfilling g ( m ( a ) ) + g ( i n ( a •  1 

for  any a ~ L  (ni lpotent  states additive). 
(NSP)  O-s ta tes  with ni lpotent  �9 not  included in (NSA),  i.e., for  

some a ~ L  one has g(m(a))  + g(in(a•  > 1 (ni lpotent  states 
pseudoaddit ive) .  

(PS) v-s ta tes  (possibili ty states). 

A similar classification of  pseudoaddi t ive  measures  (with respect to an 
Arch imedean  O )  was in t roduced in Weber  (1984). Possibility states can be 
defined equivalently through (PS1) and (PS2*):  

b) = m(a) v m(b) for any a, b eL.  

strict state is a t r ans fo rmat ion  of  a "probabi l is t ic  sum"  

(PS2*) m(a v 

Lemma 1. Any 
state. 

Proof. Let m 
g(1) = + o e .  Put  m 1 

be a O-s t a t e  where xOy=g- l (g ( x )+g(y ) ) ,  
= h o m, where h(x) = 1 - e x p ( - g ( x ) ) ,  x~[0 ,  1]. Then  

m~ is a "probabi l is t ic  sum"  state and m = h 1 o In. �9 

Lemma 2. Any O-s ta t e  m of  type (NSA)  is a t r ans fo rmat ion  of  a 
classical state s. 

Proof Let g be the genera tor  o f  �9 [ G  is ni lpotent  and hence 
g(1) = 1]. Put  s = g om. Then s is a "bounded  s u m "  state of  type (NSA)  
and hence it is a classical state. Fur ther ,  m = g - 1  o s. �9 

L e m m a s  1 and 2 are special cases of  the following theorem.  

Theorem 2. Let h: ~ [ 0 ,  1] be a strictly increasing bijection. Let  �9 be 
a pseudoaddi t ion  on [0, 1]. Then  Oh defined via x OhY = 
h-l(h(x) Oh(y)), for  x, ye[O, I], is a pseudoaddi t ion  on [0, 1], too. Fur-  
ther, Oh = �9 for any h iff �9 = v.  Let  m be a O-s t a t e  on a logic L. Then  
h o m is a Oh-s ta te  on L ( o f  the same type as m). I f  m is a possibili ty state 
on L, then h o m is a possibili ty state on L for  any h, too. 

Example 2. Let L = (~ ,  A) be a concrete logic and let f :  f~--,[0, 1] be 
any funct ion such that  sup{f(co); co Eft} = 1. Put  I I (a)  = sup~,Eaf(~0) for all 
a EL. Then 11 is a possibility state on L. 
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Lemma 3. Let L be an a tomic logic. A mapping  H: L ~ [ 0 ,  1] is a 
possibility state on L if and only if there is a mapping  f :  A ~ [ 0 ,  1], 
sup{f(a) ;  a6A}  = 1, where A is the system of  all a toms o f  L. 

Proof It is enough to put f (a) = H(a), a sA.  Vice versa, for any b ~L, 
one has H(b) = sup{f(a) ;  a <- b, a~A}.  [] 

Remark 1. I f  m is a two-valued pseudoaddit ive state on L, then it is a 
O-s ta te  for any pseudoaddi t ion |  and vice versa. I f  m is an (NSA)- type  
pseudoaddit ive state for some nilpotent pseudoaddit ion,  then it is two- 
valued iff it is both a classical state on L and a possibility state on L. 

3. |  O N  A P T A K  S U M  

Let B be a Boolean algebra and let L be a logic. The Ptfik (1986) sum 
5r o f  B and L, ~ = B + L, is a logic which may  be viewed as a system o f  
all possible n-tuples p = ( ( a l , b l )  . . . . .  (a,,bn)), n s N ,  where a , r  and 
bi zL ,  i = 1, 2 , . . . ,  n, al v �9 �9 - v a,  = 1B, al • aj whenever i # j .  Recall that  
for r = ((el, di) . . . .  (era, din)) ~ ,  one has 

r - < p  iff di-<bj  whenever c i A a j # 0 r  

r •  iff 4 Z b j  whenever c i A a j # 0 r  

r v p = ( ( a i A c i ,  b j v d i ) ,  i = 1 , 2  . . . . .  m, j = l , 2  . . . .  ,n) 

The embeddings f l  and f >  respectively, o f  B and L, respectively, into 5~ are 
the following: 

f l ( a )  = ( ( a ,  IL ) , ( a •  for a e B  

f2(b) = ( ( l s ,  b)) for b ~ L  

For  more  details see Ptfik (1986) or Janig and Rie6anov~ (1992). Let s~, s2, 
respectively, be states on B, L, respectively. For  any element p e Y ,  put 

S(p) : ~, Sl(ai) "s2(bi) 
i = 1  

Then s is a state on 5P and s~ = m  o f ,  i = 1, 2. 
In the following, we will extend the foregoing results on the Ptfik sum 

and the states to the case o f  pseudoaddit ive states. Fo r  a given pseudoaddi-  
tion |  let m 1 be a O-s ta te  on B and let m2 be a O-s ta te  on L. Under  
which condit ions is there a O-s ta te  m on ~ so that  m i = m of., i = 1, 2? 
For  this purpose we have to look for a pseudomult ipl icat ion C) on [0, 1] 
with some "convenient"  properties. Then we will expect m in the following 
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form: for a p ~ ,  one has 

m(p) = (m I (al) (2) m2(bt)) O "  �9 G (ml (a,) G m2(b,)) 

Let us denote I~ = {m~(a); a~B} and 12 ---{m2(b); b~L}. Then m can be a 
G-state only if Q fulfills the following: 

(1) x Q 1 = x  for any x ~ I  I and 1 Q z = z  for any z~I2. 
(2) ( x G y )  Q z = ( x Q z )  G ( y C ) z )  and x Q ( w G z ) - - ( x Q w ) G  

(x G z) for any x, y e l l  and z, w~I2 such that x = ml(ax) and 
y = ml (ay), ax l a y ,  and z = m2(b~), w = ln2(b2), b z l bw. 

(3) x Q z = 0  f o r x ~ I i ,  z ~ 1 2 i f [ ' x - 0 o r z = 0 .  

If m is a pseudoadditive state of type (SS), (NSP), or (PS), any x, y, z, w 
from the open unit interval may occur in (2) in general. However, if m is 
of type (NSA), the situation is rather different: let g be a generator of G; 
then only x, y, z, w fulfilling 

g(x) + g(y) <- 1 and g(z) + g(w) <- 1 

may occur in (2). These facts together with some other natural require- 
ments lead to the following definition. 

Definition 3. Let G be a pseudoaddition on [0, 1]. A binary operation 
q) on [0, 1] will be called a pseudomultiplication corresponding (A-corre- 
sponding) to G if it satisfies the following: 

(M1) 1 is both the left and the right unit, i.e., x (2)1 = x  and 
1 Q z  = z  for any x, zs[0,  1]. 

(M2) G is distributive with respect to G,  i.e., 

(x G y) (D (z G w) = (x G z) G (x Q w) G ( y (~ z) G ( y Q w) 

for any x , y , z ,  wE[O, 1] 

(M3) x Q z =O iff x =O or x =O. 
(M4) Q is nondecreasing in both components. 
(M5) Q is continuous. 

The A-correspondence of Q to G is defined only for nilpotent 
pseudoadditions G (with a generator g). We replace only (M2) by (M2A), 
where the restricted distributivity is required, i.e., we deal only w i t h  
x , y , z , w  from the unit interval satisfying g(x) + g ( y )  <- 1 and 
g(z) + g(w) < 1. 

Theorem 3. Let G be a pseudoaddition and let (D be a pseudomulti- 
plication corresponding to G (A-corresponding to G). Let B be a Boolean 
algebra and let L be a logic. Let m I be a G-state on B of some type and 
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let m2 be a G-sta te  on L of  the same type as ml. then 

m(p) = (ml(al )  C) m2(bl)) O" �9 " (3 (ml (a , )  0 (m2(b,)), p~5( '  

defines a O-state  on 5e (of  the same type as m~ and m2) such that 
mi = m of., i = 1,2. 

The proof  of  the previous theorem is an easy consequence of  Defini- 
tion 3. Note only that in the case of  (3-states of  type (NSA) we have to 
deal with an A-corresponding pseudomultiplication Q.  

L e m m a  4. Let (3 be a strict or a nilpotent pseudoaddition. Then there 
is no pseudomultiplication (D corresponding to (3. 

Proof. Let Q) be a pseudomultiplication corresponding to (3. Then for 
any z~]0, l [ , x ,  = 1 - 1/n, n = 1,2 . . . .  , one has limx~ @ z = 1 (3 z = z .  
Further, xn (3 xn < l implies 

(Xn(3Xn) GZ----(X, Q) Z)(3(X, QZ)--< 1 G Z = Z  

and consequently z ( 3 z  <-z. But this is a contradiction with the 
Archimedean property of  �9 claiming z (3 z > z for any. nontrivial z. �9 

Example  3. Let (3 be a nilpotent pseudoaddition with generator g. Put 

x Q z = g - l ( g ( x )  �9 g(z)) 

for any x, z6[0,  1]. Then (D is a pseudomultiplication A-corresponding to 

(3. 

Remark  2. Let (3 be a nilpotent pseudoaddition with generator g. Let 
B be a Boolean algebra and let m~ be an (NSA)-type (3-state on B. Let L 
be a logic and let m2 be an (NSA)-type (3-state on L. Let G be a 
pseudomultiplication introduced in Example 3. By Theorem 2, there is a 
(3-state m on the Pt/tk sum L~ induced by ml and m2. We get 

m ( p ) = g  -1 ~ ( m l ( a l ) ) ' g ( m 2 ( b  ~ for ps~O 

Following Lemma 2, we see that this situation corresponds (up to the 
transformation g) to the situation dealing with classical states. 

Example  4. Let h, q be any strict increasing continuous bijections from 
the unit interval into the unit interval such that h(x) < x, q(x) <- x for any 
x~[0,  1]. Put 

x @ z = max{h(x) .z;  x �9 q(z)} 
1 

x Q z = max{min{h(x), z}; min{x, q(z)}} 
2 
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for any  x,  ze[O,  1]. T h e n  b o t h  Q) I a n d  Q)2 are  p s e u d o m u l t i p l i c a t i o n s  
c o r r e s p o n d i n g  to v which  m a y  n o t  be  c o m m u t a t i v e .  

R e m a r k  3. Let h = q in  E x a m p l e  4 be the iden t i ty  o n  [0, 1], i.e., 

x @ z = x ' z  a n d  x @ z = m i n { x , z }  
1 2 

Let m~ be a poss ib i l i ty  state o n  a B o o l e a n  a lgebra  B a n d  let m 2 be a 
poss ib i l i ty  state o n  a logic L. Let  us  define,  for  a n y  p e S P  = B + L, 

m ( p )  = max{ma(a i )  - m2(bi ) ;  i = 1, 2 . . . . .  n}  

M ( p )  = max{min{m~ (ai),  m2(bi)} ;  i = 1, 2 . . . . .  n} 

T h e n  b o t h  m a n d  M are poss ib i l i ty  states o n  L~ such tha t  
m o f  = M o f  = mi, i = 1, 2. N o t e  tha t  m is s imi lar  to the Shi lkre t  (1971) 

in tegra l  a n d  M to the Sugeno  (1974) in tegra l  for  poss ib i l i ty  measures .  
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